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Chapter 1

Solving Derivative-Free

Nonlinear Least Squares
with POUNDERS

Much of the research and software tools in derivative-free optimization focus on
blackbox optimization problems. These are problems where the objective is ef-
fectively a blackbox function, such as the scalar-valued output of an executable-
only code, of the inputs. In practice, however, one often has additional knowl-
edge (e.g., sparsity structures, partial separability, nonlinearity, convexity, form
of nonsmoothness) about the problem, while still not having access to complete
derivative information. This knowledge, which we characterize as defining a
greybox optimization problem, can be exploited to reduce the solve time and/or
obtain more accurate solutions. On the other hand, when designing software
for derivative-free optimization, one must balance the customization needed
to exploit this type of information with the ease of use for a nonexpert user.
Achieving this balance is especially challenging in derivative-free optimization
because of the size and diversity of the user pool, which includes many applica-
tion scientists and engineers. For these nonexperts, derivative-free optimization
is often a gateway to algorithmic differentiation, nonlinear programming, and
other areas of structure-exploiting optimization.

Here we address nonlinear least squares, a particular form of structural infor-
mation that occurs frequently in derivative-free optimization and that requires
minimal input from a nonexpert. Formally, we seek local solutions to

min {f(x) = %”F(I)H% = %ZFl(l)z rzxeQC R”} ’ (1.1)

i=1

where F' : R — RP defines the system of nonlinear equations/residuals and
the Jacobian V,F'(x) is unavailable. We focus our discussion here on bound-
constrained problems, where Q = {x e R : [; < x; < w;,i=1,...,n} and the
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bounds /; < u; are not necessarily finite.

These problems arise frequently in settings such as nonintrusive model cali-
bration, where one has data d; at design sites §° and wishes to estimate the
parameters z of a nonlinear model S(6;z) that best fit the data. A max-
imum likelihood approach directly yields (1.1), with F;(z) = S(6%x) — d;,
while many Bayesian approaches can be captured through weighted residuals
Fi(z) = w% (S0 2) —d;).

Other examples of algebraic structures that have been exploited in derivative-
free optimization include partial separability [5], nonsmoothness of constraints
[9], and bilevel problems [7]. The algorithm we describe here is called POUNDERS
(Practical Optimization Using No Derivatives for sums of Squares). Other
derivative-free approaches to least-squares problems include Implicit Filtering [10,
11] and DFLS [20, 21], both of which are described later, and LMDIF [15], which
is a finite-difference-based implementation of the Levenberg-Marquardt method.
As with these three methods, the usual caveats apply with POUNDERS. In par-
ticular, we are seeking local solutions to a potentially multimodal problem (1.1),
and convergence theory (which is not our focus here) is generally limited to prob-
lems with sufficiently smooth residuals (despite the derivatives of these residuals
being unavailable).

This chapter is organized as follows:

§ 1.1 introduces the interpolation-based models employed;

§ 1.2 describes the basic algorithm;

§ 1.3 details the implementation in TAO;

§ 1.4 describes numerical results on physics calibration problems.

1.1 Smooth Residual Models

The main device that POUNDERS uses to exploit the known structure of (1.1)
is a collection of smooth surrogate models, one for each residual F;. We briefly
review the general use of models in derivative-free optimization and introduce
our approach for exploiting the known structure.

1.1.1 Quadratic interpolation models

Many forms of models have been employed for model-based optimization, from
classical polynomials [6] to radial basis functions [19] to sparse polynomials [2].
Here we focus on quadratic models

a () :c+(w—xk)Tng%(xka)TH(x—xk), (1.2)

where we have intentionally centered these models around a point z* € Q. The
model g, is defined by the % parameters c € R, g e R", H = H' €
R™*"™ where we have dropped the explicit dependence of these parameters on

k.
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Given a set Y = {y1,~-~,y‘y|} C Q and corresponding function values
{f(y") : y* € Y}, one can demand that the quadratic model interpolate the
function f on Y by determining parameters (¢, g, H) such that

If the point z* belongs to the interpolation set ), one can easily show that
c= f(z").

For a basis ¢ for quadratic functions on R™ (for example, the monomial basis
{1,21,..., 2y, 2%, 3122, ... ,22 }), satisfying the interpolation conditions (1.3) is
equivalent to satisfying the linear system

o(y") fy")
oY)z = : z= : = 1), (1.4)
$(y™) Fly™h)

where the solution z defines the model parameters (c, g, H). Whether this sys-
tem has a unique solution for arbitrary function values f()) depends solely
on the interpolation set ); in particular we note that, unlike when doing uni-
variate interpolation, having ("H)QM distinct points in ) is not a sufficient
condition for a unique solution to (1.4) when n > 2. The conditioning of this
system clearly depends on the basis employed, and most methods take this into
consideration when selecting particular forms of ) and/or ¢. Measures of the
quality of the sample set ) and the approximation properties of the resulting
model are discussed in [6]. Here a primary concern is the ability of such models
to approximate a function in a neighborhood of z*; doing so requires that the
sample points be within a certain proximity of z*.

Interpolation is not the only form of model that one could consider. Other
forms just correspond to different ways of “solving” (1.4). For example, for
overdetermined (|)| > ("H)QM) sample sets one could obtain a regression-
based quadratic by minimizing | ®())z— f())||, and for underdetermined sample
sets one could find the interpolating quadratic for which ||z|| is minimized.

For expensive problems, we generally find that we have fewer than w
nearby points. A popular way of resolving the extra degrees of freedom is the
approach of Powell [17], which finds the interpolating quadratic whose Hessian

is closest to the prior model’s Hessian, H*~1:

min A{|H - Mg an(y)) = fly)i=1 V). (15)
c,g,H=HT

This corresponds to minimizing a seminorm of z for a particular choice of basis
and again places certain demands on the interpolation set )). We refer the
interested reader to [18] for details of the solution procedure used in POUNDERS

for solving (1.5).
We note that a common measure of approximation quality for interpolation-
based models in derivative-free optimization is based on Taylor-like conditions
[6]. For example, given a continuously differentiable function f, a model m is
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said to be “a fully linear approximation on B(z*, A) = {z € Q: ||z — z*|| < A}
of f7 if

If(z) —m(x)] <1nA?  and |Vf(z) — Vm(z)| < A Vo € B(z®, A),
(1.6)
for some positive constants v1,vs (independent of x and A).

1.1.2 Modeling residuals

Given that we have a vector mapping F', in POUNDERS we form a quadratic
model

i ) ) 1 )
q) (@) = D + (2 = 2")Tg® 4 S (@ — 2} THO (2 — ¥ (1.7)

of each residual F;(z) for ¢ = 1,...,p. At first glance, it may appear that
we have substantially increased the linear algebraic overhead of determining the
("H)QM coeflicients for these p models. If we demand that the models employ

a common interpolation set ), however, the system (1.4) becomes

o(y") Fiy') - Fpyh)
®(V)Z = : [z 2P ] = : ; =FQ)".
¢(y\y|) Fl(y\yl) Fp(y\yl)

(1.8)
Thus, the coefficients for this collection of models are determined from a single
linear system, with multiple right-hand sides. In practice, the basis matrix
®(Y), and derived matrices associated with the approach in (1.5), is dense and
therefore solved with a direct method. Since the main expense will be forming
the inverse of this matrix (or a factorization of this inverse), the cost of obtaining
Z grows slowly in p.

Furthermore, since the conditioning of (1.5) depends solely on ) (and the
basis ¢), approximation properties satisfied by any one of the models will be
shared by the collection of models, provided that the residuals {F;} satisfy
common regularity conditions. For example, if ¢(*) satisfies (1.6), then every
¢ determined in a similar manner—whether from (1.8) or the analog of (1.5)—
is a fully linear approximation on B(z*, A) of the corresponding F;, provided
that all the residuals belong to the same class of functions (i.e., with regard to
smoothness and boundedness).

The left two plots in Figure 1.1 illustrate quadratic interpolation models us-
ing a common interpolation set )} on a one-dimensional problem. The rightmost
plot illustrates a coupling of these models, described next.

1.1.3 Master model for nonlinear least squares

Given a quadratic model for each residual, several ways exist for constructing a
model for the objective f in (1.1). For example, direct substitution using ¢(*) ~
F; in (1.1) would yield the fourth-order polynomial 7(z) = 1 37 | ¢ (2)2.
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Figure 1.1: Illustration of quadratic interpolation models on a n = 1-

dimensional problem with two residuals (left two plots). The master model
no longer interpolates the objective on the interpolation set; the Gauss-Newton
model (GN) neglects the model Hessian terms (rightmost plot).

Provided that the residuals are twice differentiable, we have that the first-
and second-order derivatives of the objective are

Vf(z)=> VF(z)Fi(z) and V’f(z)=)Y VF(x)VF(z) +Y Fi(z)V’F(z),

i=1 =1 i=1

respectively. The implicit filtering method [10, 11] uses a Gauss-Newton model,
whereby the second term in the Hessian is neglected and the gradient of a linear
model is used in place of each (unavailable) VF;.

In POUNDERS we employ the full second-order information for the Hessian
of f and define the master model

(e +8) = f(4) + 6T S Fe)gli) + 567 (40 (60) T + Bt HO) o,

i=1
(1.9)
where the first term assumes that ¥ belongs to the interpolation set Y* and

hence
i; (1) = §; (Fiah)”.

We refer to this model as the “full-Newton” model.

An approach that falls somewhere between the Gauss-Newton and full-
Newton models is proposed in [20], whereby the model Hessian is regularized.
The key strength of this approach in the unconstrained case is that this regu-
larization yields fast local convergence for a class of zero residual problems [21].
POUNDERS and the DFLS algorithm in [20] both employ a trust-region frame-
work but were developed independently and hence with different design goals.
In particular, POUNDERS expects to be run primarily on problems where the
residuals remain nontrivial. POUNDERS also avoids defining the breakpoints
used in DFLS to determine when to use which second-order term.
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An interesting observation about both the master model in (1.9) and the
regularized model used in [20] is that these models no longer interpolate the
nonlinear least squares objective f on the set ). For a univariate example, the
rightmost plot in Figure 1.1 shows that the master model in (1.9) interpolates
f only at the designated center point (in this case z = 0.5) but not at the
remaining points in ). This plot also illustrates potential differences between
the model in (1.9) and a Gauss-Newton model using an interpolation-based
Jacobian estimate.

1.2 The POUNDERS Algorithm

We now discuss the basic form of the algorithm underlying POUNDERS. We
use a trust-region framework, wherein the master model my, in (1.9) is used as
a quadratic surrogate for the objective f in a local neighborhood of the current
iterate z*.

Algorithm 1.1. Iteration k of Model-Based Algorithm Underlying POUNDERS.

Given HF 2F € Q,A) > 0 and constants 7 > 0, € > 0, Apax < ming{u; — I;

1. Define Y* based on H*, form my,, and determine if m;, valid.
2. If ||P(Vmg(2®), 2% 1, u)|| < ¢, check criticality; otherwise proceed to 3.

3. Solve the trust-region subproblem (1.13) to obtain z ™.

4. If ||z —aF|| = 155 Ak or my, is valid, proceed to 4a; otherwise, set #*+* =

2% Apy1 = Ag, pr. = —1, and go to 5.

4a. Evaluate f at z+ and compute p;, = %

4b. Update the trust region via

at o if pp >
2" =&zt if > pp > 0 and my, valid (1.10)

z*  otherwise,

min {24y, Apax )} if pr > 7 and ||2% — 27| > %Ak
AR = % elseif m,;, valid
A, otherwise.
(1.11)

5. If my is not valid and pg < 1, evaluate f at model-improving point and
iterate; otherwise iterate.

The steps specified in Algorithm 1.2 are repeated until a specified budget of
function evaluations has been exhausted or the criticality test (step 2) has been
satisfied.
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We collect the history of points for which the residual values are available in
HE. In each iteration, an interpolation set Y* C H* for the submodels (1.7) is
constructed, from this history, based on the current iterate z* and trust-region
radius Ay. Similarly, we say that the model my is valid if it satisfies certain
approximation guarantees (such as (1.6)) based on (z¥, Ag). Our technique
for selecting points from H* also determines the validity of the master model
my, and is discussed in [19]. Here we note only that the interpolation set is
constructed in a way that ensures that any “model-improving points” evaluated
(in step 5) since the last iterate change are included in Y*. This ensures that in
no more than n consecutive iterations will model-improving points be evaluated
before the resulting master model is deemed valid.

The criticality test is applied depending on a measure of the projected gra-
dient step, with the ith component being defined by

0 ifx;=10;and g; >0
[P(g,x,l,u)]; = 0 ifax;=u;and g; <0 (1.12)
g; otherwise.

The tolerance e is specified by a user as input. If | P(Vmy(2F), 2%, 1,u)| < € and
my, is not valid, then the trust region is maintained, (z**1, Ap 1) = (2%, Ap);
we set pr = —1; and we go to step 5 to evaluate a model-improving point. On
the other hand, if || P(Vmy(z%), 2%, 1,u)|| < e and my, is valid, then we must
ensure that the trust-region (to which approximation quality is deeply tied, see
(1.6)) is sufficiently small. In this case, either A¥ < ¢ and we terminate, or
AF > ¢ and we set (zFT1 Apy1) = (2%, €) and iterate (proceeding to step 1).

In each iteration where the criticality test is not invoked, a candidate point
T € ) is obtained by solving the trust-region subproblem

min {m(z) : © € B(xk,Ak)} , (1.13)

where we recall that the definition of the trust region B(z*,A) includes any
bound constraints, thus ensuring that ™ € Q. We are purposely ambiguous
about the norm || - || defining the trust region because, as discussed in the next
section, in POUNDERS this norm (e.g., {2, {») depends on whether bound
constraints are present and which subproblem solver is employed.

In typical trust-region algorithms, the candidate point x* is then evaluated.
We avoid performing this evaluation, however, if both the resulting step is small
and the current model is not deemed valid. In this case we instead perform the
evaluation at a model-improving point. In all other cases, the candidate point
is evaluated, and the usual ratio of actual decrease to predicted decrease (pg) is
computed. Using (1.10), the iterate is updated if this ratio is sufficiently large or
if the model was valid and a strict decrease in the function value was obtained.
Using (1.11), the trust-region radius is increased only if both the ratio and the
steplength are sufficiently large. The radius is decreased only if the model is
valid.

We note that if my is not valid and pg < 7, then the trust region (and
hence the implied definition of validity) remains unchanged. In this case we
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evaluate F' at a model-improving point, which in POUNDERS is actually gen-
erated at the same time as the model is determined not to be valid (in step
1). A key difference between the procedure employed in [19] and that used in
POUNDERS, however, occurs when finite bounds are imposed. In the develop-
ment of POUNDERS, a concerted effort was made to ensure that the model-
improving points respect these bounds. This decision was made because these
bounds are unrelaxable for many problems in practice; violating a bound could
mean crashing the corresponding simulation evaluation (e.g., when a negative
hydraulic conductivity is passed to a subsurface flow simulator). Because of our
requirement that all points evaluated by the algorithm remain in 2, we must
bound A ax, the maximum trust-region radius. If the trust-region radius were
allowed to grow significantly, one could not ensure that a model my is valid
solely by using model-improving points that respect the bound constraints.

1.3 POUNDERS in TAO

We now describe further details of a specific implementation of POUNDERS.

1.3.1 The Toolkit for Advanced Optimization

The Toolkit for Advanced Optimization (TAO, [16]) is a software package de-
signed for solving optimization problems on high-performance architectures.
TAO has an open-source license and is available at http://www.mcs.anl.gov/tao/.
The Portable, Extensible Toolkit for Scientific Computation (PETSc, [1]) pro-
vides the core scalable data structures and linear algebra routines that enable
the parallel scalability of TAO. Consequently, TAO is used to solve problems on
machines ranging from single-core laptops to massively parallel leadership-class
supercomputers.

In addition to POUNDERS, the current version of TAO includes solvers for
unconstrained optimization (e.g., limit-memory, variable metric quasi-Newton;
Newton line search; and Newton trust-region methods), bound-constrained op-
timization (e.g., TRON, interior-point Newton method), PDE-constrained op-
timization, and complementarity problems. The use of parallel data structures
and linear algebra routines makes the solvers in TAO especially amenable to
solving large-scale problems.

For our purposes, however, the key benefit of these parallel capabilities in
TAO is not for linear algebraic operations but for the objective function eval-
uation. In particular, the TAO separable objective functionality allows one to
evaluate the residual F' at a single point x using parallel resources. For exam-
ple, if each residual component F; can benefit from shared-memory parallelism
to scale up to c¢ cores, the separable objective capabilities allow for internode
parallelism of the p residuals so that the wall-clock time for an objective evalu-
ation can exhibit a potential speedup of cp. Examples of this functionality are
included with TAO.
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1.3.2 POUNDERS inputs

POUNDERS is available in TAO as the solver tao_pounders. The solver requires
a minimal number of inputs:

20 € Q, an initial starting point;

Ag > 0, the initial trust-region radius;

a routine for evaluating the residual vector F' at any given x € §2;
convergence criteria (e.g., a maximum number of function evaluations, a
model gradient tolerance ¢ > 0, a desired function value).

The values for the remaining internal constants in Algorithm 1.2 that are
used by POUNDERS are i = 15 and Apax = min {5 min;{u; — [;}, 10004 }.
Advanced users can modify several POUNDERS options:

e How the trust-region subproblem is solved, including different solver types
(e.g., an interior-point Newton method, the GQT routine from MINPACK-
2), different subproblem tolerances, and different norms for the trust-
region radius. By default, an infinity-norm trust region is used, and the
resulting bound-constrained quadratic program is solved by the TAO solver
TRON.

e A maximum number of interpolation points || (in {n +2,...,
By default, this is set to 2n + 1.

e Finite lower and/or upper bounds. By default, the problem is assumed to
be unconstrained.

e A set of points H° (and the corresponding residuals) at which the residual
vector F' has been evaluated prior to the call to POUNDERS. By default,
this set is assumed to be empty.

n+1)(n+2
(rt1)( )}).

Since the trust-region norms employed in POUNDERS treat each variable
identically, the scaling of variables is an important consideration. Other solvers
in TAO employ gradient information in order to scale each of the variables.
Since POUNDERS does not have access to actual derivative information, the
user must ensure that the problem is well-scaled. If the bounds have been
selected so that the residual variation across these bounds is similar for each
variable, then we advocate scaling the problem so that the bounds correspond
to the unit hypercube [0, 1]™. For unconstrained variables, one would similarly
scale each variable so that unit changes in each variable result in similar order-
of-magnitude changes.

1.4 Calibrating Energy Density Functionals

We now illustrate the application of POUNDERS on problems arising in the
UNEDF low-energy physics project [4].

A grand-challenge problem in low-energy nuclear physics is to determine
an energy density functional (EDF) that describes properties of atomic nuclei
across the nuclear landscape (see, e.g., Figure 1.2). One of the focuses of the
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Figure 1.2: The nuclear landscape as shown by a table of nuclides (each column
representing an element and its isotopes). The shading for each nuclei shows the
total deformation as computed by an EDF code using the UNEDF; functional
optimized by POUNDERS [14].

UNEDF project was developing EDFs based on density functional theory. Such
EDF approaches depend on phenomenological constants, for example, in the
form of low-energy coupling constants. Values for these constants are typically
optimized based on fits to available experimental data and pseudo-data (derived
from experiment and/or ab initio approaches). Selection of these fit observables
depends on which coupling constants must be determined and on the desired
properties for the resulting functional. A starting point for the optimization,
which can play a critical role in the solution quality obtained by a local op-
timization solver, is often readily available in these calibration problems, for
example, from the values of a previous-generation EDF optimization or from
“natural values” for the coupling constants.

The number of optimization variables is typically on the order of a dozen;
see Table 1.1. Although some coupling constants have natural ranges, the ma-
jority are effectively free: the physics-based view is that they are “constrained
by the fit observables.” In practice, however, the simulation codes that evalu-
ate a particular observable are not expected to produce meaningful output for
arbitrary values of coupling constants. In the worst case, the code can even
fail (e.g., because the underlying self-consistent-equation solver or eigensolver
fails to converge). Thus, for computational reasons, bound constraints are often
specified by application users as a way to restrict the domain in which the op-
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Table 1.1: Problem characteristics.

Problem UNEDF, | UNEDF; | UNEDFy | NNLOgp: | BPWqp

Reference [12] [14] [13] 8] (3]
# Variables, n 12 12 14 14 17
# Residuals, p 108 115 130 2173 2049
# Nuclei Calc. 72 79 98 2173 2049

timization solver is allowed to operate. This is one of the reasons POUNDERS
respects bound constraints, not only for the trust-region subproblem (1.13), but
also for model-improving points. As a result, for these EDF calibration prob-
lems, the majority of the bounds are expected to be inactive at the solution.
For example, for the UNEDF5 solution [13], only two of the fourteen variables
attained one of their bounds.

Observables used in these optimizations have included a wide range of nu-
clear properties. For example, in the UNEDF; study [13], the p = 108 residuals
involved 47 deformed binding energies, 29 spherical binding energies, 28 proton
point radii, 13 OES values, 4 fission isomer excitation energies, and 9 single-
particle level splittings; in the BPWp, study [3], only binding energies were
considered but pseudo-data from over 2,000 nuclei were used. In all problems,
the residual vector passed to POUNDERS corresponds to the scaled difference
between a simulated observable of a particular nucleus and its corresponding ex-
perimental data or pseudo-data value. The scaling weights are typically based
on the uncertainty in the data and simulation and the effects of these weights
are typically analyzed at the solution to the optimization; see [12].

Computationally, the overwhelming expense in running POUNDERS on such
problems can be attributed to the time required to evaluate the residual vector.
The CPU time required to perform a single nucleus simulation (which results
in multiple observable outputs for some problems, see Table 1.1) at a particular
x € Q value ranged from 10 seconds in [3] to 12 minutes in [12].

Taking advantage of the separable function capabilities in TAO, one can re-
duce the wall-clock time needed to evaluate the residual vector by simulating
each of the nuclei concurrently. If the simulator can itself exploit parallelism,
then each nucleus calculation can be sped up further. For example, in the
UNEDF; study, each of the 79 nuclei calculations employed a single node con-
sisting of 8 cores, with the master TAO driver operating on another node. Using
these 640 cores, the optimization evaluated 218 points in 5.67 hours of wall-clock
time. The same run performed on a single core would have consumed roughly
70 days (the speedup being less than ideal because of load imbalance and the
8 cores not being perfectly utilized). For the UNEDF5 run, the computational
footprint grew to nearly 1,600 cores (with 16 cores for each of 98 nuclei calcu-
lations).

However, benefiting from larger computational resources is not the only fac-
tor accelerating the solution of expensive EDF calibration problems. Algorith-
mic improvements, which result in reductions in the number of points at which
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Figure 1.3: Best function value found (log scale) for the energy density cal-
ibration problem in calibration problem in [3]. This figure shows the bene-
fit of exploiting the least-squares structure (POUNDERS) over not doing so
(POUNDER); this benefit persists if both methods are warm-started with eval-
uations for an initial space filling design.

the simulators must be run in the course of the optimization, are responsible for
a multiplicative scaling of this speedup. For the BPW,y, problem, Figure 1.3
shows the objective function values obtained with two different model-based
trust-region algorithms: POUNDERS exploits the availability of the residual
vector F'; while POUNDER treats the scalar-valued aggregate f as a “black
box”. Comparable objective values are obtained in a factor 10 fewer evaluations
when the structure is exploited. An even larger factor was seen when comparing
POUNDERS with TAO’s Nelder-Mead code on the UNEDF,, problem [12].

Furthermore, POUNDERS has the ability to exploit residual evaluations done
externally, for example, as a result of a variable scaling study, an efficient initial
sampling, or a globalization strategy. For the BPW, problem, Figure 1.3 illus-
trates the benefits of using this information to warmstart the initial submodels
used by POUNDERS.

1.5 Discussion

The POUNDERS solver has been used to make a number of advances in EDFs
by solving computationally expensive, nonlinear least-squares problems in the
absence of Jacobian information. We attribute the algorithmic benefits of the
approach to the model-based framework, which has proven effective in the gen-
eral blackbox case, and to taking advantage of the additional information (in
this case, the residual vector) provided in greybox problems. Because of their
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core similarities, we expect that the DFLS algorithm would perform similar to
POUNDERS on unconstrained problems; we also observe that DFLS compares
favorably to other derivative-free methods on a large set of mathematical test
problems [21]. Lowering the barrier to running many simulations concurrently
has also been a key strength of POUNDERS.
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